データサイエンス基礎

 

学びの活用方法

全学部・学科の学びに活用できる内容です。
それぞれの学部学科での学びの活用事には例えば次のようなことが挙げられます。

家政学部

・アートとサイエンスの融合からひとと社会をつなげる生き方のデザイン
・コンシューマーデータサイエンス:消費者データを活用して販売傾向や商品デザインの予測

栄養学部

・ヘルスデータサイエンス:栄養データを活用して食と健康を考える人間栄養学の展開
・コンシューマーデータサイエンス:消費者データを活用した商品開発 や販売傾向の予想

児童学部

・1人1台端末時代に教育データを活用した幼児、児童、生徒の個性の育成

人文学部

・広い視点から様々なデータを分析
・多様なこころのあり方と向き合うためのデータ活用
・グローバルワイドな英語教育データの活用
・社会と社会をつなげるコミュニケーション力の向上
・福祉社会データをもとにした福祉施策のデザインと実行

健康科学部

・ヘルスデータサイエンス:臨床現場のヘルスデータの分析と解釈個別化医療への取り組みや保健医療施策の検討
・専門教育での学修:概念(ヘルスデータサイエンス)と知識(統計の基本)

子ども支援学部

・子ども一人ひとりの特性や行動、生活環境などの分析
・幼児教育・保育や特別支援教育への活用

3つの特徴

特徴1 フル・オンデマンド形式のメディア授業

【東京家政大学初のキャンパス横断科目】
板橋・狭山の両キャンパスの学生が履修可能なフル・オンデマンド形式のメディア授業です。自分のペースで場所を選ばず学ぶことができます。 また、夏期集中期間に開講されるため、他の授業・実習などとは重ならず、本科目の学修に専念することができます。

特徴2 初学者でも学びやすい内容

すべての学部・学科の学生が学びやすい内容になっており、初学者でも安心して取り組むことができます。 データサイエンス学修で学ぶべき、導入・心得・基礎に関する必要な内容を網羅しています。

特徴3 本学認定の「修了証」を発行

「データサイエンス基礎」の単位取得をした方には、東京家政大学「数理・データサイエンス・AI教育プログラム認定制度」に基づき、本学認定の「修了証」を発行することができます。

授業情報(2024年度)


動画一覧

履修登録方法

<注意>
・通常の科目とは履修登録の仕方が大きく異なります。板橋の学生で教必ではない学生と児童学科の学生、狭山の看護学科・子ども支援学科の学生は、下記の手順で受講の希望申請からはじめてください。(教必(児童学科を除く)の学生とリハビリテーション学科の学生は各自で履修登録を行ってください。)
・対象学年は令和6年度入学の“1年生のみ”となります。

①受講希望申請 東京家政大学ポータルで別途案内する手順に従ってください。
「データサイエンス基礎」の受講を希望する場合は、申請期間(4月19日〜5月12日)内にGoogleフォームにて“受講希望”申請を行ってください。

※Googleフォームによる受講希望申請に関する連絡は4月19日にポータルにて行いますのでご注意ください。
②履修確定 「データサイエンス基礎」の履修確定に関する連絡は、5月末までに共通教育推進部から届きます。このときに履修登録は自動的にされますので、受講生は履修登録の手続きが不要となります。

※受講希望者多数の場合は、抽選により受講者が確定されます。
③授業開講 「データサイエンス基礎」は8月19日~9月4日に集中講義として実施されます。
全14回の講義はオンデマンド配信されますので、受講生はすべての動画を視聴し各回の課題等を期間中に提出してください。

単位の取り扱い

板橋キャンパス 教必(児童学科を除く)の方は共通教育科目の「情報関連科目」として、それ以外の方は「情報活用(必修科目)」の履修に加えて「データサイエンス基礎(選択必修科目・ 2単位)」を履修することができます。
修得した単位は「共通教育科目」の単位として卒業単位に含まれます。
狭山キャンパス リハビリテーション学科の方は基礎教養科目の「データサイエンス基礎(必修科目・2単位)」を履修します。
看護学科と子ども支援学科の方他学部履修として「データサイエンス基礎(選択科目・2単位)」を履修します。
修得した単位は「基礎教養科目」の単位として卒業単位に含まれます。

授業計画

第1回 オリエンテーション、データサイエンスとは
第2回 現代社会におけるデータ・AIの利活用(1)データの集め方、データの利用
第3回 現代社会におけるデータ・AIの利活用(2)データ・AI利活用のための技術
第4回 現代社会におけるデータ・AIの利活用(3)AIリテラシー
第5回 現代社会におけるデータ・AIの利活用(4)各専門分野での活用事例
第6回 教育におけるデータサイエンス(1) データ活用事例
第7回 教育におけるデータサイエンス(2) 個人情報、情報セキュリティ
第8回 データを読む(1)データの種類、代表値、分散
第9回 データを読む(2)母集団と標本抽出、アンケート調査
第10回 データを説明する~データ図表表現
第11回 データを扱う(1) Excelによる記述統計
第12回 データを扱う(2) Excelによるクロス集計
第13回 データを扱う(3) 相関分析・散布図
第14回 現代社会におけるデータ・AIの利活用(5)まとめ、データサイエンスの応用事例

モデル学修プラン

受講期間初日に全14回すべての動画が公開されますので、各自の取り組みやすいペースで学修できます。

午前 午後 授業外学習
8月19日〜23日 第1回 オリエンテーション、データサイエンスとは 各回の課題等
(課題提出期限:9月4日)
第2回 現代社会におけるデータ・AIの利活用(1) 第8回 データを読む(1)
第3回 現代社会におけるデータ・AIの利活用(2) 第9回 データを読む(2)
第4回 現代社会におけるデータ・AIの利活用(3) 第10回 データを説明する
第5回 現代社会におけるデータ・AIの利活用(4) 第11回 データを扱う(1)
8月26日〜28日 第6回 教育におけるデータサイエンス(1) 第12回 データを扱う(2)
第7回 教育におけるデータサイエンス(2) 第13回 データを扱う(3)
第14回 現代社会におけるデータ・AIの利活用(5)
8月29日〜9月4日 予備期間 各回の課題等(課題提出期限:9月4日)

シラバス



お問い合わせ

共通教育推進部(板橋キャンパス 百周年記念館1階)
TEL : 03-3961-5624
Mail : jyoho-jimu■tokyo-kasei.ac.jp(※■を@へ変更しご連絡下さい。)


関連情報