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Abstract

Previous studies have shown that functional mobility, along with other physical functions,

decreases with advanced age. However, it is still unclear which domains of functioning

(body structures, body functions, and activities) are most closely related to functional mobil-

ity. This study used machine learning classification to predict the rankings of Timed Up and

Go tests based on the results of four assessments (soft lean mass, FEV1/FVC, knee exten-

sion torque, and one-leg standing time). We tested whether assessment results for each

level could predict functional mobility assessments in older adults. Using support vector

machines for machine learning classification, we verified that the four assessments of each

level could classify functional mobility. Knee extension torque (from the body function

domain) was the most closely related assessment. Naturally, the classification accuracy

rate increased with a larger number of assessments as explanatory variables. However,

knee extension torque remained the highest of all assessments. This extended to all combi-

nations (of 2–3 assessments) that included knee extension torque. This suggests that resis-

tance training may help protect individuals suffering from age-related declines in functional

mobility.

1. Introduction
Fractures account for approximately 10% of all cases in which older individuals become bed-

ridden [1]. As Japan is the most rapidly aging society in the world, it is a matter of social con-

cern to help prevent falls among older adults. One solution is to predict the probability of

functional mobility decline by assessing physical function [2]. Moreover, declines in functional

mobility and balance are related to falls [3, 4]. Therefore, previous studies have identified the

predictors of results for the Timed Up and Go (TUG) test [2], maximum walking speed test

[5], one-leg standing time test [6], functional reach test [7], Berg balance scale [8], functional

balance scale [9], and four square step test [10]. Among these, the TUG test is highly recom-

mended as a screening tool for identifying whether older individuals are at risk of falling [11].

The TUG test is also useful for predicting functional mobility, especially balancing and gait

maneuvers used in everyday life (e.g., standing up, sitting down, walking, and turning) [2].
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A clinical review by Brown et al. [12] found that the predictors of mobility limitation could

be aggregated into five factors: age, physical activity, BMI, muscle strength, and disease. There-

fore, in older adults, mobility has a complex relationship with various domains of functioning.

Further, previous studies have found that poor TUG ranks are associated with the affected

domain of body structures (e.g., body composition [13]), body functions (e.g., respiratory

function [14], muscle strength [15]), and activities (e.g., balance ability [16]). Thus, relevant lit-

erature shows that there are correlations between each domain of functioning (body struc-

tures, body functions, and activities) in healthy older adults [17–19]. The domains of

functioning were defined in the International Classification of Function, Disability, and Health

(ICF) by the World Health Organization (WHO) in 2015. However, regarding older adults in

Japan, it remains unclear which functioning assessments are most closely related to functional

mobility. Additionally, it is difficult to interpret functioning assessments of certain older indi-

viduals due to the increased frequency of multiple chronic diseases [20] and general declines

in overall functioning [21, 22]. Moreover, frailty consists of several interrelated factors, includ-

ing age-associated declines in lean body mass, strength, endurance, balance, and walking per-

formance [23]. In sum, it remains unclear which domain of functioning is most related to

TUG rank, which makes it difficult to determine the priority of results when attempting to

interpret multiple assessments for a given individual.

To bridge the aforementioned gaps in the literature, we used support vector machines

(SVMs) of machine learning classification algorithm (commonly used for estimating multivar-

iate patterns) [24]. SVMs are suitable for finding relationships by high-dimensional mapping

using support vectors from small sample data with complex relationships. Moreover, the pre-

diction accuracy of machine learning prediction methods (e.g., Random Forest, Artificial Neu-

ral Network), including SVMs, are not affected by multicollinearity [25]. When dealing with

multivariates that are correlated with each other such as in the present study, one of the rea-

sonable methods to employ is SVMs [26]. The purpose of our study was clarified assessment

patterns for each domain reflecting functional mobility rankings according to the TUG test.

As such, we employed a machine learning classification by using TUG rank as an objective var-

iable, while the assessment values of each domain (body structures, body functions, and activi-

ties) relative to the averages of the same generations were set as explanatory variables. From

the viewpoint of structure of ICF, our hypothesis is that the prediction accuracy increases in

the order of the domain from the bottom to the top, and the activities similar to TUG is the

highest. Based on this classification, we attempted to clarify which assessments were most

closely related to functional mobility among older adults. To the best of our knowledge, no

previous studies have investigated this issue in Japan. Our study on Japanese older adults is rel-

evant because Japan has one of the highest life expectancy rates in the world.

2. Materials andmethods

2.1 Eligibility criteria

The East Japan Community Study of Aging (EJCSA) is an ongoing longitudinal survey that

targets home-dwelling, healthy older adults in eastern Japan. The number of data recorded in

the database of the EJCSA from 2018 to 2020 was 121. A total of 112 subjects were extracted as

the target data for analysis according to the criteria of aged over 50 years and without physical

disabilities.

The sample size was determined following a previous study finding knee extension torque/

bodyweight of 1.91 ± 0.58 Nm/kg (average ± standard deviations) among 24 middle age and

1.55 ± 0.47 Nm/kg among 24 old adults [27]. Sample size was calculated based on a desired

80% statistical power to detect a 0.35 Nm/kg difference (standard effect size, 0.60) in knee
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extension torque. We confirmed that the sample size was satisfied after being estimated using

G�Power 3.1 software (Franz Faul, University of Kiel, Kiel, Germany), with an effect size 0.30,

a minimum power 0.80, and = 0.05. All participants provided written informed consent

prior to participation. Furthermore, all procedures adhered to the Declaration of Helsinki. The

experimental procedures were specifically approved by the Research Ethics Committee of

Tokyo Kasei University.

2.2 Classifications: Five groups and four assessments

Participants performed the TUG test at a comfortable speed. We then used their results to clas-

sify them into five groups, following the guidelines that the Tokyo Metropolitan Institute of

Gerontology established based on a study by Obuchi et al. [28]. These were labeled Group 1

(males� 7.2; females� 8.9), Group 2 (males 6.1–7.1; females 7.5–8.8), Group 3 (males 5.5–

6.0; females 6.5–7.4), Group 4 (males 5.0–5.4; females 5.8–6.4), and Group 5 (males� 4.9;

females� 5.7). All units indicate seconds.

The assessments were used as follows.

1. Soft lean mass (SLM)
Body composition was assessed through direct segmental multi-frequency bioimpedance

analysis (DSM-BIA) using the InBody770 (InBody Co., Ltd., Korea), which uses a multi-fre-

quency segmental measurement method with an eight-point tactile electrode. Multi-fre-

quency measurements were taken using frequencies of 1, 5, 50, 250, 500, and 1000 kHz for

each body segment. The data were normalized according to generation and sex, based on

Lee’s work [29].

2. FEV1/FVC of respiratory function
FEV1/FVC ratios were measured using a digital spirometer (AS-407, MINATOMedical

Science Co., Ltd., Japan). Participants were asked to take deep breaths using a mouthpiece

attached to the spirometer, while sitting. They were then asked to hold their breath long

enough to seal their lips tightly around the mouthpiece. Afterwards, they were asked to

hold their noses tightly and exhale the air out as forcibly and quickly as possible, until all

the air was expelled. Participants were verbally encouraged to continue exhaling during this

phase.

3. Knee extension torque (KET)
Participants were tested for isometric maximal voluntary contraction of the knee extensor

muscles on the dominant lower limb using a dynamometer (μ Tas-01, Anima Co., Ltd.,

Japan). During the test, participants were seated comfortably in a chair with their trunks

erect, while knee and hip angles were maintained at 90 degrees. The task consisted of a

quick increase to the maximum force exerted by the leg. The higher data of each leg was

divided by the participants’ weight and normalized according to generation and sex, based

on Bohannon’s work [30].

4. One-leg standing time (OLST)
The OLST test measures participants’ ability to continue standing on one leg with their eyes

closed. The test ended when participants moved their supporting legs, lost balance, or

opened their eyes. The upper threshold was 30 seconds. We registered the mean times for

each supporting leg and normalized them according to generation and sex, based on

Springer’s work [31].

The FEV1/FVC, KET, and OLST were adopted higher result in two trials. The participants

had enough rest time between each trial, which involved resting for at least about 3 minutes
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between each trial, taking into account the effects of muscle fatigue [32]. The participants com-

pleted the assessments randomly. All assessments were normalized by each maximum value

and expressed as 0–1.

2.3 Data analysis

We performed a one-way ANOVA for age differences among the TUG groups. Correlation

coefficient was estimated the relationship between data of each assessment before normalizing

and result of TUG.

All five TUG groups were used as objective variables in the SVM. To avoid group variabil-

ity, data from each group included four assessments: (1) SLM, (2) FEV1/FVC, (3) KET, and (4)

OLST. The data of each group were randomly expanded to 1,000 data to overcome the limita-

tion of a small sample size and difference in sample sizes among groups. Therefore, a total of

5,000 data measurements from all groups were maintained for the distribution of actual data

using the bootstrap method. This bootstrap resampling method is often used in demographic

studies [33].

The data were randomly divided as 90% training data and 10% testing data. The training

data were submitted to the SVM; that is, the SVM algorithm was constructed as a prediction

model using the training data. After the training, the resultant SVM prediction model with

the 90% training data (4500 data) was used to predictively classify the remaining 10% testing

data (500 data) into either of the five TUG groups or the four assessments for cross-valida-

tion. To verify the effect of the number and/or combination of assessments on predictive

accuracy, SVM prediction was performed for all 15 combinations of the four assessments

(4C1 + 4C2 + 4C3 + 4C4), and randomly divided into training and testing data for each

prediction.

Predictive accuracy was calculated as the total number of successful predictions in each

group divided by the total number of predictions in all groups. This ensured that a trained

SVM with a Gaussian kernel could prospectively be generalized (G(xj, xk) = exp(−kxj − xkk2)).
In the current investigation, we used “templateSVM,” available in MATLAB software (The

MathWorks Inc., Natick, MA, USA), which utilizes the algorithm defined by Schölkopf et al.

[34]. The relationship between the accuracy rate and number of assessments was tested using

AIC (Akaike’s information criteria) as a non-linear regression equation.

3. Results
Table 1 shows participants’ characteristics for each group. As seen, participants’ ages in Group

1 were significantly higher than for participants in Groups 2, 3, and 4 (p< 0.05). There were

significant differences between Groups 1 and 4 regarding SLM, KET, and OLST. Except for

the SLMmeasurements between Groups 1 and 3 (p< 0.05), there were no significant inter-

group differences for the other assessments. S1 Fig shows the relationships between the TUG

test and other assessments (only KET showed a low negative correlation coefficient; p< 0.05),

while Table 2 shows the average accuracy rates of SVM prediction. Combinations of three to

four assessments had high rates. The relationship between the accuracy rate and number of

assessments was highly correlated (S2 Fig, R = 0.89, p< 0.001). Notably, all top accuracy rates

for single assessment and each combination of two and three assessments included KET

(SLM + FEV1 / FVC + KET 89.2%, and SLM + KET 82.2%, only KET 57.2%). Moreover, the

combination of FEV1 / FVC and KET was higher accuracy rate than the combination of SLM,

FEV1 / FVC and OLST + KET (82.0%).

PLOS ONE Using machine learning to investigate the relationship between domain of functioning and mobility in elderly
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4. Discussion
We conducted SVM prediction for TUG ranks based on all 15 combinations of four assess-

ments in each domain (body structures: soft lean mass; body functions: FEV1 / FVC, knee

extension torque; activities: one-leg standing time). KET still had the highest accuracy rate in

any single assessment, and all combinations (of 2–3 assessments) that included KET were the

highest. To the best of our knowledge, this is the first study to identify the most closely related

functioning assessment to functional mobility using a machine learning classification method.

The accuracy rate increased depending on the number of explanatory variables as assess-

ments (S2 Fig). This result is natural because all assessments are known to contribute to the

TUG. Next, in combinations of three assessments, the OLST, FEV1 / FVC and SLM assess-

ments were omitted in order. The accuracy rate of the combination of SLM, FEV1 / FVC, and

Table 1. Participants’ characteristics and bootstrap resampling data for each TUG group (mean ± standard deviation).

Group 1 Group 2 Group 3 Group 4 Group 5

Male TUG 7.2 6.1 Male TUG > 7.1 5.5 Male TUG > 6.0 5.0 Male TUG > 5.4 4.9 Male TUG

Female TUG 8.9 7.5 Female TUG> 8.8 6.5 Female TUG > 7.4 5.8 Female TUG > 6.4 5.7 Female TUG

Participants (n = 112) 30 32 28 18 4

Age (years) 74.7 ± 7.4
�2, 3, 4 68.8 ± 6.1

�1 65.3 ± 7.5
�1 66.9 ± 8.0

�1 69.8 ± 8.0

Sex (male / Female) 25 / 5 13 / 19 2/26/2021 0 / 18 1 / 3

Actual Bootstrap Actual Bootstrap Actual Bootstrap Actual Bootstrap Actual Bootstrap

1) Soft lean mass (kg) 24.05 ± 3.93
�3, 4 24.07 ± 3.85 21.86 ± 5.15 21.89 ± 5.03 20.26 ± 2.92

�1 20.24 ± 2.83 19.68 ± 1.56
�1 19.67 ± 1.50 21.78 ± 4.94 21.81 ± 4.03

2) FEV1 / FVC (%) 69.70 ± 11.86 69.63 ± 11.59 75.18 ± 9.99 75.19 ± 9.75 74.57 ± 8.64 74.59 ± 8.39 76.28 ± 9.77 76.25 ± 9.26 74.75 ± 4.65 74.76 ± 3.78

3) Knee extension
Torque (Nm / kg)

0.91 ± 0.31
�4 0.92 ± 0.30 0.99 ± 0.26 0.99 ± 0.25 1.13 ± 0.30 1.12 ± 0.29 1.24 ± 0.22

�1 1.24 ± 0.22 1.07 ± 0.36 1.07 ± 0.30

4) One leg standing
time (sec)

19.75 ± 9.34
�3 19.86 ± 9.14 22.41 ± 10.06 22.41 ± 9.85 26.53 ± 5.04

�1 26.58 ± 4.91 26.10 ± 7.32 26.12 ± 6.95 28.25 ± 3.50 28.24 ± 2.53

� p < 0.05; n = 112 older Japanese adults.

The number of next to � is the group number with a significant difference.

https://doi.org/10.1371/journal.pone.0246397.t001

Table 2. List of average accuracy rates (highest to lowest).

1) Soft lean mass 2) FEV1 / FVC 3) Knee extension torque 4) One leg standing time Accuracy rate (%)

94.4%

- 89.2%

- 88.4%

- 87.8%

- - 82.2%

- 82.0%

- - 79.4%

- - 75.0%

- - 73.6%

- - 66.8%

- - 64.8%

- - - 57.2%

- - - 56.6%

- - - 50.8%

- - - 46.2%

Note: Open circles indicate adopted assessments, while minuses indicate non-adopted assessments.

https://doi.org/10.1371/journal.pone.0246397.t002
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OLST were lower than that of the combination of two assessments including KET. However,

this accuracy rate did not depend on the number of assessments. Moreover, the bottom three

in the single assessments were SLM, FEV1 / FVC, and OLST. From these points, the difference

in the explanatory variables can be seen between SLM, FEV1 / FVC, and OLST compared to

KET. However, since the chance of predicting the TUG’s five ranks by simply thinking is 20%,

it cannot be said that the predictive accuracy of these evaluations is low (SLM: 56.6%; FEV1 /

FVC: 50.8%; KET: 46.2%). This may be due to the fact that the evaluation is related with TUG.

4.1 Significance as an analytical method for the support vector machine

Among four assessments, our results showed that knee extension torque was the most closely

related to each participant’s TUG rank. The various abovementioned parameters of function-

ing typically decrease with age [20]. Personal data obtained from older adults often include

high-correlation (multicollinearity) data, such as age-dependent parameters [23]. Using a mul-

tivariate analysis method precludes the analysis of data unless the other explanatory variables

are removed. However, machine learning prediction can make it possible to analyze data with

multicollinearity [35]. One of the methods of machine learning prediction is SVMs with kernel

function. Therefore, results achieved through SVM projection are not affected by collinearity

[36]. In other words, this machine learning prediction method enabled us to avoid removing

important information about participants. Moreover, the input data are first projected onto a

higher dimensional space before they are employed in the estimation process. Thus, this

method allowed us to conduct a complex factor analysis by multiple variables. Other studies

have used SVMs to analyze the relationships between outcomes and multiple complicating fac-

tors, as to individually predict each participant’s prognosis [37]. An SVM with high discrimi-

nation accuracy was suitable for this study due to its usefulness in selecting evaluations with

complicated correlations. However, the classification function obtained through the SVM is a

black box that outputs only the classification results. This makes it difficult to interpret the

contributions of each variable. In this study, all explanatory variables (SLM, KET, FEV1/FVC,

and OLST) were already known contributors to the objective variable (TUG), as mentioned

above. For this reason, the study was able to use machine learning to demonstrate a relation-

ship between knee extension muscle strength as a body function domain and the TUG test,

which analyses of variance and correlations cannot reveal.

4.2 The most related domain of functioning assessment is body function:
Knee extension torque

In our study, KET as the evaluation of knee extension muscle strength was the assessment

most related with functional mobility. It should be noted that our results differed from those

of previous studies. In older adults with functional limitations, previous studies have found

that neither muscle strength nor power in the lower extremities were correlated with walking

distance [38]. In older adults with high activity, another study reported that leg muscle

strength and leg lean tissue mass are not outcomes for predicting mobility, because both are

similarly weakly correlated with gait performance [39]. The results of the aforementioned

studies likely differed from ours due to differences in methodology (short-term interventions

and correlation coefficients analysis vs. machine learning).

Changes to the neural system and muscle fibers, which naturally occur with age, lead to

declined neuromuscular function [40]. This is associated with a reduced ability to generate

both muscle strength and power, consequently impeding daily living activities [41, 42]. In our

study, body structure comparisons between SLM and FEV1/FVC showed that SLM was signifi-

cantly higher in Group 1 (low rank), while there were no significant intergroup differences for

PLOS ONE Using machine learning to investigate the relationship between domain of functioning and mobility in elderly
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FEV1/FVC. Compared to cardiorespiratory fitness, knee muscle torque is significantly associ-

ated with overall physical activity, postural transitioning, walking, and stair climbing [27].

Similarly, it is conceivable that the relationship between gait performance and leg muscle

strength is stronger than that between gait performance and leg muscle mass [39]. The Euro-

peanWorking Group on Sarcopenia in Older People suggests a conceptual staging that

includes presarcopenia, sarcopenia, and severe sarcopenia. The presarcopenia stage is charac-

terized by decreased muscle mass without significant effects to muscle strength or physical per-

formance. This stage can only be identified using techniques that accurately measure muscle

mass and reference standard populations [43]. As it is possible that many of this study’s partic-

ipants also had presarcopenia, they may have had a reduction in SLM, but not reductions in

TUG ranks or knee muscle strength.

The functional reach test is another common activity assessment when evaluating dynamic

balance. However, a previous study found that knee extension muscle strength was a more

important independent factor than functional reach [44]. Therefore, we conducted compari-

sons between activities via the one-leg standing test. Since the TUG test reflects walking speed,

it may also be associated with activity tasks, such as the 10 m walking test. In a previous study,

approximately 50% of older adults who had no difficulties when turning achieved nearly the

same results as younger adults with similar characteristics. In said study, researchers used a

pivot strategy involving one or two steps to accomplish turns in 2.49 seconds or less with no

signs of imbalance [45]. For both young and old participants without walking difficulty, the

ratio of walking time to total time in the TUG test was nearly the same. This indicates that

both the TUG test and KET are related to walking speed, suggesting a strong relationship

between the TUG test and KET.

5. Conclusions and limitations
This study had some limitations. As previously mentioned, we could not include the causality

between each domain/assessment and functional mobility through this study’s machine learn-

ing method. Specifically, it focused only on four assessments throughout the three domains of

functioning. Therefore, SVM prediction could not exclude the possible influences of other

domains (e.g., environmental and individual factors) or assessments (e.g., cardiopulmonary

function or outdoor activity) and/or any interactions between these factors. In addition, there

are various machine learning classification methods such as random forest and artificial neural

network available today. It is necessary to verify the optimal method for such assessments in

future studies.

Although this study assessed limited domains of functioning, it strongly suggests that evalu-

ations of body function are helpful when implementing preventive rehabilitations aimed at

functional mobility. As resistance training can be used to maintain muscle strength, our results

also suggest that it can help prevent age-related decline in functional mobility, thereby reduc-

ing the fall risk. If physiotherapists investigate the possibility of falling among highly active

elderly people, prioritizing the monitoring of items related to physical function, especially

muscle weakness could be valid. In making a rehabilitation program to reduce fall risk among

the elderly, increasing the proportion of strengthening or maintaining muscle strength could

be valid as part of rehabilitation therapy.

As the Japanese population continues to age, it is even more important to ensure that citi-

zens maintain knee extension muscle strength at above-average levels for their respective age

groups. This may help prevent the risk of older adults becoming bedridden, while also reduc-

ing nursing care requirements and lowering overall medical expenses. For these reasons, the
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same measures are also important in other countries, and require further investigation, espe-

cially in countries with aging populations.

Supporting information
S1 Fig. Relationships between TUG times and assessments. (A) soft lean mass; (B) knee

extension torque; (C) FEV1 / FVC; (D) one-leg standing time. Images show correlation coeffi-

cients (r) and linear regression lines.

(TIFF)

S2 Fig. Relationships between accuracy rate and number of assessments. The circles show

the accuracy rate of each combination of assessments and the dashed line represents the non-

linear regression line.

(TIFF)
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Abstract
Despite the impact of leg muscle strength on lower extremity motor performance—including walking and sit-to-stand transfer—it
remains difficult to predict the relationship between bilateral leg muscle strength and lower extremity performance. Therefore, this
study was designed to predict lower extremity function through the differential modeling of logarithmic and linear regression, based
on knee extension strength.
The study included 121 individuals living in the same community. The bilateral strengths of the knee extensors were measured

using a handheld dynamometer, and the Timed Up & Go test (TUG) performance time and 5-m minimum walking times were
assessed to predict lower extremity motor functions. Bilateral normalized knee extensionmuscle strengths and lower extremity motor
function scores, including walking or TUG performance times, were assessed on the logarithmic and linear models. The Akaike
information criterion (AIC) was used to evaluate the coefficient compatibility between the logarithmic regression model and the linear
regression model.
The AIC value for the linear model was lower than that for the logarithmic model regarding the walking time. For walking time

estimation in the linear model, the coefficient value of knee extension strength was larger on the strong than on the weak side;
however, the AIC value for the logarithmic model was lower than that for the linear model regarding TUG performance time. In the
logarithmic model’s TUG performance time estimation, the coefficient value of knee extension strength was larger on the weak than
on the strong side.
In conclusion, our study demonstrated different models reflecting the relationship between both legs’ strengths and lower

extremity performance, including the walking and TUG performance times.

Abbreviations: AIC =Akaike information criterion, SD = standard deviation, TUG = Timed Up & Go.

Keywords: knee extension strength, lower extremity motor performance, rehabilitation, sit-to-stand, walking

1. Introduction

Walking and sit-to-stand progression are considered essential
lower extremity motor functions in daily life[1–5]; however, motor
performance declines with aging[6–8] and is associated with daily
dysfunction,[9–12] falls,[13] cognitive disorder,[14–16] decreasing
quality of life,[17] hospitalization,[18,19] and mortality.[20–22]

Previous studies have reported that weakness in both legs is an

important risk factor for the inability to perform lower limb
motor functions, such as sitting-to-standing movement and
walking.[1,11,23–26] Therefore, a decline in the muscle mass of
both legs is considered a major factor for the development of
muscle weakness in older adults and is obvious in regions, such as
Japan, the United States, and Europe, where society is
dramatically aging.[1,6,26,27] Heterogeneous reductions in both
legs’ muscle strengths in particular may be clinically relevant to
determine the relationship between lower extremity motor
performance and leg muscle strength.[7]

The association between strength and performance has been
estimated by both linear and non-linear models. Cross-sectional
studies[28] on motor performance and strength have traditionally
used linear regression modeling; however, a previous study[29]

suggested that the association between motor performance and
strength may be curvilinear. Exceeding or increasing the intensity
of this threshold level cannot improve task performance; below
the threshold, a stronger relationship between change in strength
and change in performance should be evident. Nevertheless, it
remains difficult to predict the relationship between lower
extremity motor performance and leg muscle strength. Several
aspects should be addressed, such as which side of the leg (i.e.,
weak or strong) as well as which model based on muscle strength
(logarithmic or linear regression) can predict lower extremity
motor performance. By predicting lower limb function in
community-dwelling people according to knee strength, training
to restore lower limb function will be more evidence-based in an
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aging society. Thus, accurate prediction of lower extremity motor
performance would provide crucially important information for
both health care administrators and individual patients.
Therefore, this study was designed to assess the relationship

between lower extremity motor performance and knee extension
strength, and topredict lower extremitymotorperformance via the
differentialmodelingof logarithmic and linear regression,basedon
knee extension strength. To the best of our knowledge, this is the
first study to demonstrate the balance of leg strength needed to
perform functional tasks. Considering the findings of previous
studies regarding lower extremity function, we hypothesized the
following: there is a suitable balance between both legs’ muscle
strengths, allowing the prediction of lower extremity motor
performance; and lower extremity motor performance may be
accurately predicted by linear or logarithmic regression models
basedonboth legs’muscle strengths.Here,we predicted balance of
muscle strength in both legs for lower limb motor function by
applying linear or logarithmic regression modeling.

2. Methods

The research procedure was approved by the Research Ethics
Committee of Tokyo Kasei University and performed in
accordance with the principles of the Declaration of Helsinki.
All participants were fully informed of the purpose and procedure
of the study prior to participation. Written informed consent was
obtained from each participant.

2.1. Eligibility criteria

The eligibility criteria included the following: community-
dwelling individuals; absence of palsy, knee pain, and injury;
and no use of assistive devices for walking and sit-to-stand. The
target sample size was based on a desired 90% statistical power
to detect changes in lower extremity motor performance and
muscle strength, with a 0.90 effect size and a 2-sided a-level of
0.05. Inputting these parameters into the Hulley matrix[30]

yielded a sample size of 113; accordingly, we planned to
retrospectively recruit 113 patients from a database of survey for
Tokyo and Saitama regional area for the analysis of muscle
strength and lower extremity motor performance.

2.2. Muscle strength measurements

Ahandheld dynamometer (mTas-F1,AnimaCorp., Tokyo, Japan)
was used to evaluate bilateral isometric knee extension strength as
an indicator of overall lower limb strength. Each participant sat
upright in an elevated chair with the hips and knees bent at
approximately 90 degrees, the feet over the floor, and the palms
resting on their thighs. The dynamometer was placed perpendicu-
lar to the leg, just above the ankle. During all tests, the
dynamometer was stabilized by the examiner’s hands and a belt.
The participants were instructed to straighten their knees, push the
dynamometer, and gradually increase force with maximum
voluntary effort; this was maintained for an additional 5seconds.
During the session, each participant was given consistent

verbal encouragement. The dynamometer was stabilized by the
examiner using both hands during all tests, and the extension of
each limb was evaluated. The starting limb was randomized. Leg
strength was measured twice, and the mean was used as a
parameter.[1,26] Bilateral knee extension forces (kgf) were
normalized against body weight (kgf/kg), and muscle strength

measurements were used to predict lower extremity motor
performance.

2.3. Walking time assessment

To assess the minimum walking time, participants were asked to
walk 5 m straight at their maximum speeds[11]; the run-up
distance was set to 3 m, and the time required for the patient to
cross 5m (determined from the start reference line, to crossing the
goal reference line) was measured. The participants were
instructed to stand still with their feet behind a taped starting
line and walk in a straight line at their maximum speed, without
stopping at the goal reference, following the examiner’s “Go!”.
Timekeeping started at the first foot fall and ended when the
participant’s first foot completely crossed the 5 m end line.[31]

2.4. Timed Up & Go test

The participants started in the chair sitting position, while the
distance to the pole was 3 m. They walked as fast as possible,
went around the pole, and sat back in the chair. The examiner
measured the time required to return to the chair sitting position
from the start; the use of walking aids, such as a cane, handrail,
walker, or orthosis, was not permitted.

2.5. Data analysis

We predicted that lower extremity motor performance would be
linearly or logarithmically affected by bilateral lower muscle
strength.[32] Therefore, a functional model based on strength and
performance was constructed as follows:

f xðxÞ ¼ bsxs þ bwxw þ aþ e ð1Þ

f xðxÞ ¼ bslnxs þ bwlnxw þ aþ e ð2Þ

where b is the contribution ratio for the weak (w) or strong side
(s) of the leg; x is the normalized knee extension strength; a is the
potential effect of confounding factors; and e is the residual error.
Each participant’s data were fitted to the model via the least-
squares method. The Akaike information criterion (AIC) matrix
was used to assess the compatibility of the a- and b-values of the
model on the weak and strong sides of the leg. The AIC was
calculated as follows:

AIC ¼ n log
SSR
n

� �
þ 2k ð3Þ

where n is the number of data entries, SSR is the sum of squared
residuals between the model’s predictions and actual data, and k
is the number of parameters. A lower AIC value indicates better
a- and b-values of the model.[33] If the model was applicable, the
series of values for e in Eqs. (1) and (2) would be uncorrelated to
each other (i.e., independent); therefore, we assessed the
applicability of the model with the Ljung–Box test to measure
the independence of e as a white noise and residuals process. The
following equation was used for the Ljung–Box test:

QðhÞ ¼ nðn þ 2Þ
Xh

i¼1

r̂l
2

n� i
ð4Þ

where n is the sample size, (r̂ l) is the sample autocorrelation at lag
i, and h is the number of lags being tested. Thus, the data
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permitted the evaluation of whether lower extremity
motor performance is linearly or logarithmically affected by
bilateral lower muscle strength.We defined statistical significance
as P< .05; all statistical tests were performed using R 3.4.0
software (R Foundation for Statistical Computing, Vienna,
Austria).

3. Results

In total, 121 community-dwelling individuals (sex, 46 male and
75 female individuals) were recruited (Table 1). The participants’
age ranged from 32 to 86years (average, 67.1years; standard
deviation [SD], 10.8years). Their body weight ranged between
36.9 and 82.5kg (average, 57.3kg; SD, 9.4kg), and the body
mass index was between 15.6 and 31.8 (average, 22.8; SD, 2.8).
The normalized knee extensor strength on the strong side for the
121 participants in this study ranged from 1.40 to 8.56kgf/kg
(average, 5.39; SD, 1.30kgf/kg); the normalized knee extensor

strength on the weak side ranged from 1.21 to 8.26kgf/kg
(average, 4.89; SD, 1.27kgf/kg).
Figure 1 shows the AICmatrix calculated to determine optimal

a-, bs-, and bw-values for the linear and logarithmic models. The
smallest AIC value for the linear model (–182.71) was lower than
that for the logarithmic model (–156.06) regarding the walking

Figure 1. The AIC matrices for walking (A and B) and TUG performance (C and D) times were determined to ascertain the optimal a-, bs-, and bw-values for the
linear and logarithmic models. AIC=Akaike information criterion, TUG=Timed Up & Go.

Table 1

Characteristics of the study population.

Participants (n=121)

Age (years) 67.1±10.8
Sex (male/female) 46/75
Body weight (kg) 57.3±9.4
Body mass index (kg/m2) 22.8±2.8
Normalized knee extensor strength on the strong side (kgf/kg) 5.39±1.30
Normalized knee extensor strength on the weak side (kgf/kg) 4.89±1.27

Values are presented as means± standard deviations.
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time; however, the smallest AIC value was lower for the
logarithmic (–19.0.6) than for the linear model (–16.49)
regarding the Timed Up&Go (TUG) performance time. Figure 2
shows the scatterplots for the relationship between the actual and
predicted walking times, and the TUG performance time. The
predicted values for the walking and TUG performance times
were derived from the linear and logarithmic model formulae
using optimal a-, bs-, and bw-values; the linear and logarithmic
models were similar to both the actual walking and TUG
performance times obtained. The Ljung–Box test showed that the
series of e-values for the model with the lowest AIC was
independent in the linear and logarithmic models, indicating that
both models were efficient ([walking time] linear model: P= .329,
logarithmic model: P= .220; [TUG performance time] linear
model: P= .165, logarithmic model: P= .104).
In the linear model for walking time estimation, the jbsj-value

(0.11) was larger than the jbwj-value (0.00). This finding
indicated that the muscle force on the strong side of the leg
contributed more to the walking time compared to the weak side
of the leg. In the logarithmic model’s TUG performance time

estimation, jbwj-value (1.00) was also larger than jbsj-value
(0.52), indicating that muscle force on the weak side of the leg
contributed more to the TUG performance time compared to that
on the strong side of the leg.

4. Discussion

In this study, a correlation between both legs’ muscle strengths
and lower extremity motor performance—including walking and
TUG performance times—was discovered by applying linear and
logarithmic regression modeling. The results indicated that the
correlation between the knee extension strength and the walking
time was linear on the strong side, whereas that between the TUG
performance time and the knee extension strength was logarith-
mic on the weak side.
The slowing of lower extremity motor functions, such as

walking and sit-to-stand transfer, is likely to cause a decline in
activities of daily living performance capacity,[34] and may
increase fall risk[35] andmortality.[24] Previous studies have noted
that the knee extension strength was associated with better lower

Figure 2. Scatter plot showing the relationship between the measured and predicted walking times (A and B) and the TUG performance time (C and D). The
predicted values were derived from linear and logarithmic model equations using optimal a-, bs-, and bw-values. Gray and black circles represent actual and
predictive data, derived from the linear and logarithmic models, respectively. TUG=Timed Up & Go.
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extremity motor performance.[28,29,36] Cross-sectional studies on
strength and function have focused on correlational analysis
using linear regression modeling[28,29,36,37]; however, some
reports have demonstrated that lower extremity muscle strength
was linearly related to the walking speed[37] and the TUG
performance time,[38] whereas others have reported that no
correlation was found.[37] The lack of a linear relationship
between lower extremity motor performance and strength likely
contributes to the discrepancies regarding the correlation
between lower limb muscle strength and lower extremity motor
performance in the literature.[37]

A previous study regarding the relationship between function
and strength noted that the knee extension strength was
correlated to non-linear function with a threshold for lower
extremity functions[29]; the threshold level was 0.6Nm/kg for
walking and 0.8 to 1.2Nm/kg for transferring to the bed/toilet/
shower.[39,40] In our study, the correlation between the walking
time and strength resembled linear modeling, whereas the
relationship between the TUG performance time and strength
resembled logarithmic modeling. Different models for walking
and TUG may have been caused by the lower threshold level for
walking than for sit-to-stand transfer. In our work, the
participants’ knee extension strengths were slightly high, as they
were community-dwelling people without palsy or injury;
therefore, many participants’ knee extension strengths may be
above the threshold level for walking. While this leads to the
linear relationship between walking and strength, the threshold
level for sit-to-stand transfer may be higher than many
participants’ knee extension strengths; therefore, the relationship
between the TUG and knee extension strength resembled the
logarithmic model. Correspondingly, our results showed that
knee extension strength on the strong side predicted walking time
more accurately than the weak side; conversely, that on the weak
side predicted TUG performance time more accurately than the
strong side because of the lower threshold level for walking than
for sit-to-stand transfer.
Interestingly, a previous study reported that 88% of the

variability in walking speed was not explained by isometric
strength; therefore, strength is an important—but not comprehen-
sive—determinant of walking.[41] In fact, the mode of isometric
evaluation was not the same as for lower extremity performance;
thus, the use of isometric measurements using a handheld
dynamometer seems to be limited by the lack of specific rhythmic
(walking) and isotonic (sit-to-stand transfer) performance. Future
studies are needed to evaluate whether changes in isometric and
isotonic muscle strength values are reflected in the ability of the
participants towalkand transfer froma sitting to standingposition.
Additionally, a previous study noted that hip extensor strength
predicted walking performance, whereas ankle plantar flexion
strength predicted older adults’maximal walking speed and stride
length[7]; further research is needed to investigate the relationship
between strengths of multiple muscle groups and lower extremity
performance,whichmayyield amore comprehensive assessmentof
total body strength than a single joint assessment.
In conclusion, this study presented a different model that

reflects the relationship between muscle strength of both legs and
lower limb performance times, such as gait and TUG perfor-
mance. Resistance training based on normalized knee extensor
strength is necessary to improve muscle strength and prevent
functional decline. The findings of this studymay contribute to an
evidence-based approach to resistance training for lower
extremity motor performance.
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Abstract: The prevalence of physical functioning limitations is positively correlated with age in both
men and women. However, whether the appearance of deterioration differs depending on physical
function and sex remains unclear. This study aimed to clarify the modes of age-related changes in
physical function and sex differences in middle-aged and older adults. This study comprised 124
(46 men and 78 women) healthy adults aged 30 years or older and examined gender differences in
physical function. The results of this study showed that one-leg standing time had the highest rate of
age-related decline in both men and women, followed by knee extension strength, skeletal muscle
mass, the 5 m walking test, and the timed up and go test. The sex-specific points showed a high rate of
decline in trunk forward bending in men and a high rate of decline in forced expiratory volume (1 s)
and gradual rate of decline in the bone area ratio in women. After middle age, it is desirable to start
monitoring and training balance, muscle function, and walking. Men require early intervention for
flexibility, and women require early intervention for respiratory function and continued intervention
for bone mineral density.

Keywords: aging; physical function; sex; middle-aged and older adults; rehabilitation

1. Introduction

Age-related decline in physical functioning is a major factor in life disorders common
in men and women. Physical functioning is an important marker of healthy aging and is a
dynamic aspect of health. In Japan, the baby boomer population will reach its peak in 2025,
and Japan will become a super-aging society in which one in four people is 75 years old or
older. From the viewpoint of preventive medicine, under such circumstances, various fields,
such as medical care, long-term care, and welfare aim to prevent age-related deterioration
of physical functions, such as muscular strength, balance ability, and walking ability and
extend healthy life expectancy.

Physical functions, such as muscle function [1,2], walking ability [2,3], flexibility [3],
balance ability [4], respiratory function [5], and bone density [6], have been reported to
decline with age.

Skeletal muscle mass begins to decrease from approximately 50 years of age and has
been reported to decrease markedly more in the lower limbs than in the upper limbs [1,7].
Muscle strength peaks in middle age and by 90 years of age, declines by up to 50% [8].
Rapid walking speed decreases with advancing age, especially after 70 years [9], while
balance ability is reported to decrease after the age of 40 [10]. The lung matures by 20–
25 years of age (maximum lung function is reached at approximately 25 years in men
and 20 years in women), after which aging is associated with a progressive decline in
respiratory function [5]. In addition, peak bone mass is reached in early adulthood and
decreases with age from approximately 50 years [11]. These age-related functional declines
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are factors in sarcopenia, frailty, and locomotive syndrome and cause inhibition of social
participation, due to falls, fractures, and inactivity. However, the order in which each
physical function declines is unclear.

Skeletal muscle decline due to aging has been reported as a sex difference in phys-
ical functioning, with age-related skeletal muscle mass loss in men twice as fast as in
women [12]. In contrast, previous studies have reported that women have a longer life
expectancy than men but often live longer with disabilities [13]. Compared to men, women
have poorer levels of physical functioning [14,15] and experience a more rapid decline in
functioning [16,17]. The prevalence of physical functioning limitations is positively corre-
lated with age in both men and women. However, whether the appearance of deterioration
differs depending on physical functioning and sex remains unclear. Therefore, it is not clear
what preventive interventions should be administered to middle-aged and older adults. If
we can identify the mode of change in physical functioning decline with age and sex, we
may be able to contribute to effective interventions to prevent physical function decline.
Therefore, regarding muscle strength, lower limb muscle strength may show a sharper
decrease than upper limb muscle strength, and walking ability affected by these factors
may show a gradual decrease. In addition, regarding sex differences, we hypothesized that
men with more basic physical strength, but a shorter lifespan, might exhibit a more rapid
decline. This study aimed to clarify the modes of changes in physical functioning and sex
differences in middle-aged and older adults.

2. Materials and Methods

2.1. Research Design and Subjects

A cross-sectional study design was utilized in which samples were retrospectively
extracted from the survey database for the Tokyo and Saitama regional areas from 2018
to 2020. This study comprised 124 healthy middle-aged and older adults aged 30 years
or older (46 men, 78 women; mean age, 66.0 ± 12.0 years), who received an explanation
of the purpose of this study and provided written consent to participate. The eligibility
criteria were as follows: community-dwelling individuals; absence of palsy, knee pain,
and injury; and no use of assistive devices for walking and sit-to-stand. The study was
conducted according to the guidelines of the Declaration of Helsinki and was approved by
the Research Ethics Committee of Tokyo Kasei University (SA2019-1, date of approval: 24
April 2019).

2.2. Physical Functioning Measurement

Height and weight were measured with the subjects wearing light clothing and
no shoes. Body mass index (BMI) was calculated from height and weight as follows:
weight/height squared (kg/m2). Physical functions, including skeletal muscle mass, vital
capacity, bone area ratio, the 5 m walking test, timed up and go (TUG) test, trunk forward
bending, grip strength, knee extension strength, one-leg standing time with eyes closed,
and visual reaction time, were measured.

2.2.1. Skeletal Muscle Mass

Skeletal muscle mass was measured using a bioelectrical impedance analyzer. Height
was measured using a stadiometer (PA-200, UCHIDA YOKO Co., Ltd., Tokyo, Japan), and
body weight and skeletal muscle mass were measured, using a body composition analyzer
(InBody470; InBody Japan Inc., Tokyo, Japan). The bioelectrical impedance analysis (BIA)
method is suitable for screening body composition, including muscle mass, because it
is safe, simple, reliable, valid, and transportable, compared to computed tomography,
magnetic resonance imaging, and dual-energy X-ray absorptiometry methods [18]. Each
subject was barefooted, stood on the left and right metal plates, and grasped the metal
conductor with both upper limbs for measurement. Quantitative evaluation of the skeletal
muscle mass by the BIA method using Inbody is reliable and valid [19,20].
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2.2.2. Forced Expiratory Volume (1 Second)

Forced expiratory volume (1 s [FEV1]) was measured using a digital spirometer (AS-
407, MINATO Medical Science Co., Ltd., Osaka, Japan). The subject held their nose and tried
to exhale as forcefully and quickly as possible until all the air had been expelled. Subjects
were instructed to continue exhaling during this stage. FEV1 is associated with physical
activity [2,21,22], is a predictor of the risk of cardiovascular disorders and mortality [23],
and is used to evaluate respiratory and circulatory functions.

2.2.3. Bone Area Ratio

Bone density was examined along the heel bone, using quantitative ultrasound to
measure the bone area ratio (Benus evo; Nihon Kohden, Tokyo, Japan). The ultrasound
pulse reflection and transmission methods were used together. This method does not use
X-rays, making it ideal for examining pregnant women and young people. Each subject sat
in a chair, and measurements were taken on the right heel. Quantitative measurement of
bone density using ultrasound is used as a valuable tool for osteoporosis screening [24,25].

2.2.4. 5 m Walking Test

For the 5 m (meter) walking test, a distance of 3 m was set for the run-up, and the
measurement started 3 m before the 5 m test distance. The measurement started when a
part of the body crossed the 5 m start line and ended when the body crossed the 5 m goal
line. The 5 m walking test was performed once at maximum walking speed and recorded
in seconds. The 5 m walking test is a reliable evaluation tool used in large-scale surveys to
evaluate walking ability [26].

2.2.5. Timed Up and Go Test

For the TUG test, the subject stood up from an armless chair, walked 3 m, made a turn
around a placed cone, walked back, and sat down again. The time from getting up from the
chair to sitting down was measured. Subjects tried to walk as quickly as possible without
shoes. The test was performed once and recorded in seconds. TUG is recommended as a
regular screening test for falls in the American Geriatrics Society and the British Geriatrics
Society guidelines [27], and is a reliable and valid assessment tool [28].

2.2.6. Trunk Forward Bending

The purpose of the trunk forward bending measurement is to determine the degree of
flexibility. The subject was placed in a long-sitting posture with the hips, back, and head
close to a wall and arms outstretched front horizontally with the floor; the lumbar joint
was bent forward, and measurement was recorded at the point reached by the fingertips.
Measurements were taken once, without bending or recoiling the knees or extending one
hand more than the other. The recorded unit was centimeters. Trunk forward bending is
an index of flexibility and is a highly valid evaluation tool applied in physical fitness tests
by the Ministry of Education, Culture, Sports, Science and Technology of Japan [29].

2.2.7. Grip Strength

Grip strength of the dominant hand was measured, using a Smedley-type (mechanical)
handgrip dynamometer (Smedley; Matsumiya Ika Seiki Seisakujo, Tokyo, Japan). To
measure the grip strength, the dynamometer was held in a standing position with the
pointer facing outward, and the width of the grip was adjusted so that the interphalangeal
joint of the index finger was bent 90◦. In an upright position with the feet hip-width apart,
the arms were lowered naturally, and the dynamometer was grasped with maximum force
without touching the body or clothing. Measurements were taken twice on the dominant
side, and the average value was used for the analysis. The measurements were recorded
in kilograms. Grip strength is a highly reliable and valid evaluation tool used in national
surveys as a representative value of individual muscle strength [29–31].
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2.2.8. Knee Extension Strength

Knee extension strength was measured using a dynamometer (μTas-01, Anima Co.,
Ltd., Tokyo, Japan) for isometric maximal voluntary contraction of the predominant lower
limb knee extensor. Subjects comfortably sat in a chair with their torso upright, maintaining
a knee-to-hip angle of 90◦. The task involved maximum knee extension while maintaining
posture. Measurements were taken twice on the dominant side, and the average value was
used for the analysis. The measurements were recorded in kilograms.

2.2.9. One-Leg Standing

One-leg standing time was measured as an evaluation of balance. The time from the
signal of “Please raise your foot” to one of the following conditions was measured: the
position of the standing foot shifted, the raised foot touched the floor, or the raised foot
touched the supporting leg. The upper threshold was set at 30 s. The measurement was
performed once on each side with the eyes closed, and the average value was used for the
analysis.

All tests were performed by an occupational or physical therapist and a trained
research assistant.

2.3. Statistical Analyses

The t test was performed to compare each physical function between men and women.
To verify the mode of change in physical function with aging, the score of each physical
function was normalized, using the average score in the 30 s [29,32–38], and the linear
model of Equation (1) used the generalized least squares method, where “t” denotes each
person’s age, “α” denotes the physical function level of 30 s, and “β” denotes the rate of
decline for each physical function:

f(t) = α + βt (1)

We approximated the measured normalized data, and the absolute values of β were
compared. Statistical analyses were performed using the Statistical Package for the Social
Sciences (S IBM SPSS Statistics for Windows, Version 26.0, Armonk, NY, U.S.A.) and R 3.5.2
software (R Foundation for Statistical Computing, Vienna, Austria).

3. Results

Table 1 shows the characteristics of the study subjects. Men had significantly higher
skeletal muscle mass and stronger grip and knee extension strength than women. Women
had significantly higher forward trunk bending measurements than men. There were no
significant differences in age, BMI, FEV1, bone area ratio, the 5 m walking test, TUG test, or
one-leg standing time between men and women.

Tables 2 and 3 show the rate of decline in each physical function. In all subjects,
the normalized data for each physical function approximated a linear model, except for
trunk forward bending (p < 0.0001, Durbin–Watson ratio = 1.579–2.288). The absolute
values of β were, in descending order, −0.0174, −0.0076, −0.0076, −0.0053, −0.0044,
−0.0041, −0.0030, and −0.0026 for the one-leg standing time, knee extension strength,
skeletal muscle mass, grip strength, TUG test, 5 m walking test, FEV1, and bone area
ratio, respectively. In contrast, in men, the absolute values of β were, in descending
order, −0.0170, −0.0089, −0.0072, −0.0071, −0.0064, −0.0054, and −0.0043 for the one-leg
standing time, trunk forward bending, skeletal muscle mass, knee extension strength, grip
strength, TUG test, and 5 m walking test, respectively. In women, the absolute values
of β were −0.0180, −0.0069, −0.0066, −0.0043, −0.0039, −0.0037, −0.0037 and −0.0035
for the one-leg standing time, knee extension strength, skeletal muscle mass, FEV1, bone
area ratio, TUG test, grip strength, and 5 m walking test, respectively. The normalized
data did not approximate the linear model in FEV1 and bone area ratio for men or trunk
forward bending for women. Figures 1–3 show the standardized distribution of each
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physical function and its linear model for all subjects, men, and women. Figure 4 shows a
comparison of the rate of decline in each physical function.

Table 1. Characteristics of the study subjects.

All
n = 124

Men
n = 46 (37.1%)

Women
n = 78 (62.9%) p †

Mean ± SD

Age (years) 66.0 ± 12.0 68.0 ± 13.7 64.9 ±10.7 0.159
Body mass index (kg/m2) 22.8 ± 2.8 23.1 ± 2.1 22.6 ± 3.1 0.284
Skeletal muscle mass (kg) 22.1 ± 4.6 26.5 ± 4.3 19.6 ± 2.4 *

FEV1 (%) 74.4 ± 10.0 74.3 ± 10.5 74.4 ± 9.9 0.993
Bone area ratio (%) 27.0 ± 3.1 27.6 ± 3.5 26.7 ± 2.8 0.117

5 m walking test (m/sec) 1.93 ± 0.27 1.97 ± 0.30 1.91 ± 0.25 0.188
Timed up and go test (sec) 5.9 ± 0.9 5.9 ± 1.0 5.9 ± 0.9 0.976

Trunk forward bending (cm) 28.2 ± 10.7 25.0 ± 10.5 30.0 ± 10.5 0.012
Grip strength (kg) 28.1 ± 8.0 35.1 ± 8.0 26.4 ± 7.3 *

Knee extension strength (kg) 29.7 ± 8.8 34.7 ± 8.7 26.7 ± 7.3 *
One-leg standing time (sec) 10.1 ± 8.9 9.5 ± 9.4 10.4 ± 8.6 0.558

t-test

SD: standard deviation, ns: not significant. † Significant difference between men and women in each physical function, * p < 0.001.

Table 2. Comparison of the rate of decline in each physical function in all subjects.

All
β α DW p R2 p R

One-leg standing time −0.0174 1.51 2.031 * 0.427 * 1
Knee extension strength −0.0076 1.24 1.769 * 0.149 * 2

Skeletal muscle mass −0.0076 1.65 1.579 * 0.208 * 3
Grip strength −0.0053 1.16 2.119 * 0.171 * 4

Timed up and go test −0.0044 1.25 2.288 * 0.201 * 5
5 m walking test −0.0041 1.28 1.97 * 0.114 * 6

FEV1 −0.0030 1.07 1.93 * 0.085 * 7
Bone area ratio −0.0026 0.98 1.877 * 0.096 * 8

Trunk forward bending −0.0038 0.91 1.792 0.060 0.025 0.043

β: rate of decline, α: physical function level of the 30 s, DW: Durbin–Watson ratio, R: rank based on β, * p < 0.001.

Table 3. Comparison of the rate of decline in each physical function between men and women.

Men Women
β α DW p R2 p R β α DW p R2 p R

One-leg standing
time −0.0170 1.49 2.141 * 0.493 * 1 −0.0180 1.54 1.971 * 0.375 * 1

Knee extension
strength −0.0071 1.10 2.303 * 0.466 * 4 −0.0069 1.25 2.046 0.002 0.105 0.002 2

Skeletal muscle mass −0.0072 1.52 2.17 * 0.381 * 3 −0.0066 1.64 2.111 * 0.227 * 3
Grip strength −0.0064 1.19 2.502 * 0.382 * 5 −0.0037 1.08 2.143 0.011 0.071 0.010 7

Timed up and go test −0.0054 1.34 2.033 * 0.249 * 6 −0.0037 1.20 2.545 * 0.165 * 6
5 m walking test −0.0043 1.26 1.814 0.010 0.120 0.011 7 −0.0035 1.25 2.135 0.008 0.072 0.010 8

FEV1 −0.0021 1.03 2.079 0.105 0.019 0.179 −0.0043 1.13 1.952 * 0.152 * 4
Trunk forward

bending −0.0089 1.20 2.419 * 0.288 * 2 0.0020 0.57 1.821 0.484 0.001 0.613
Bone area ratio −0.0016 0.94 1.907 0.192 0.021 0.168 −0.0039 1.06 2.214 * 0.253 * 5

β: rate of decline, α: physical function level of the 30 s, DW: Durbin–Watson ratio, R: rank based on β, * p < 0.001.
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Figure 1. Normalized distribution and linear model of each physical function in all subjects. Each physical function declines
with age. In particular, the rate of decrease in one-leg standing time, knee extension strength, and skeletal muscle mass
was high.

Figure 2. Normalized distribution and linear model of each physical function in men. Each physical function declines with
age, except for FEV1 and bone area ratio. In particular, the rate of decrease in one-leg standing time, trunk forward bending,
skeletal muscle mass, and knee extension strength was high.

－ 68 －



J. Clin. Med. 2021, 10, 4800 7 of 11

Figure 3. Normalized distribution and linear model of each physical function in women. Each physical function declines
with age, except for trunk forward bending. In particular, the rate of decrease in one-leg standing time, knee extension
strength, and skeletal muscle mass was high.

Figure 4. Comparison of the rate of decline in each physical function between all subjects, men, and women. Each bar
shows the rate of decline in each physical function. The black bars represent all subjects, the dotted bars represent men, and
the diagonally striped bars represent women.
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4. Discussion

This study showed that an age-related decrease in some physical functions was similar
between men and women. In both men and women, the balance ability (one-leg standing
time) had the highest rate of decline, followed by muscle function (knee extension strength,
skeletal muscle mass) and walking ability (5 m walking test and TUG test). The sex-specific
points were a high rate of decline in flexibility (trunk forward bending) in men and a high
rate of decline in respiratory function (FEV1) and gradual rate of decline in bone mineral
density (bone area ratio) in women.

The physiological and functional problems of muscles and the decrease in walking
ability are related in a complex manner, and it seems that they have a significant effect
on the decrease in balance ability. Muscle strength peaks in middle age and declines by
up to 50% by 90 years [8]. The level of change with age may vary, due to several factors.
For example, grip strength decline begins at age 40 [29], whereas rapid walking speed
decreases significantly after 70 years [9]. These declines in physical function are expected
to affect activities and participation levels, such as mobility, falls, and going out. The rate of
decrease in one-leg standing time with eyes closed was the highest in both men and women.
Balance ability is associated with muscle weakness [39] and flexibility [40] and is considered
a comprehensive index of physical function. Age-related declines in physical function
occur with diminished neuromuscular and musculoskeletal function, diminished muscle
strength, and diminished coordination and motor control. Changes in sensory receptors
and peripheral nerves associated with decreased visual acuity and vestibular function
affect the lower extremities’ postural control and muscle output, resulting in decreased
postural balance [39,41]. It has been reported that the one-leg standing test is useful for
screening the risk of falls [42] and is an important evaluation for both young [43,44] and
older adults [45]. It was suggested that one-leg standing time with eyes closed is useful
as a factor that can detect early deterioration of physical function, even in middle-aged or
healthy older adults.

Furthermore, both muscle strength and balance ability were reported to be significant
predictors of walking disability [46], and balance ability, lower limb muscle strength, and
walking ability were reported to be associated with fall risk and activities of daily living
disorders [47,48]. Multimodal exercise, a complex program, has been reported to be more
effective with multiple outcomes, including strength, balance, walking speed, and falls,
compared to a single exercise. [49]. It is desirable to start training muscle strength and
walking centering as balance training from middle age onward.

A comparison between men and women showed that trunk forward bending de-
creased in men, and FEV1 and bone area ratio decreased in women, which was sex specific.
The flexibility of the trunk is lower in men than in women, and the decrease in flexibility
seems to be faster in men than in women. It was reported that women are more flexible than
men in both young and old age [50,51], and this study showed similar results. In addition,
the fact that the decrease in bone mineral density was more pronounced in women than in
men was consistent with the results of previous studies [6]. Previous studies have reported
age-related declines in respiratory function in both men and women [52], and lung capacity
values of women were significantly lower than those of men [53]. The lungs reach maturity
by the age of 20 and achieve maximum function at about 25 years in men and 20 years in
women. Lung function changes minimally and stabilizes between the ages of 20 and 35,
after which it begins to decline [5]. However, Sharma et al. reported that the effects of aging
on lung function vary significantly. In addition, age-related decline in FEV1 may have a
non-linear phase with an accelerated rate of decline after the age of 70 [5]. In the future, we
would like to examine the appropriate intervention timing and method to prevent these
declines in physical function.

Notably, although there was no difference between men and women in the univariate
analysis (FEV1, bone area ratio), there was a difference in the rate of decrease (β). Therefore,
when comparing sex differences, it was suggested that not only cross-sectional numerical
comparisons, but also changes due to aging should be investigated. Based on our results,
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balance ability and muscle function in both men and women, flexibility in men, and
respiratory function in women should be evaluated and addressed from an early stage.

This study has several limitations. First, the individual physical functions were
measured cross-sectionally. Therefore, changes in these individual parameters over time
could not be considered. In addition, the subjects of this study were healthy, middle-aged,
older adults. Therefore, the results of this study cannot be generalized to frail, older adults.

The result of this study clarified that physical function showed a sex-specific decrease.
This result contributes to appropriate timing and sex-based interventions for middle-aged
and older people.

5. Conclusions

Balance ability had the highest rate of age-related decline followed by muscle function
and walking ability in both men and women. The sex-specific points showed a high rate of
decline in flexibility in men and a high rate of decline in respiratory function and gradual
rate of decline in bone mineral density in women. After middle age, it is desirable to start
monitoring and training balance, muscle function, and walking. In addition, men require
early intervention for flexibility, and women require early intervention for respiratory
function and continued intervention for bone mineral density. The findings from this study
provide useful information for the development of effective early interventions that aim to
extend the healthy life expectancy of men and women in an aging society.
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